Sort By
Publication Year
Deposit Date
Title
Type
Access
Publication Year
2017 (6)
2016 (5)
2015 (1)
Type
article (12)
Version
No records found.
M-Rank
M21a (6)

Adzic, R.

Link to this page

Authority KeyName Variants
7f37b483-6c0a-4ca4-baa4-b59e3a6c3d1f
  • Adzic, R. (12)
Projects
BMWFW (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MOST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), BUAP (Mexico), CIN-VESTAV (Mexico), CONACYT (Mexico), LNS (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA), Marie-Curie program (European Union), European Research Council (European Union), EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS program of the Foundation for Polish Science, Mobility Plus program of the Ministry of Science and Higher Education (Poland), OPUS program of the National Science Center (Poland), Thalis program - EU-ESF, Greek NSRF, National Priorities Research Program by Qatar National Research Fund, Programa Clarin-COFUND del Principado de Asturias, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand), Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand), Welch Foundation [C-1845], Aristeia program - EU-ESF, European Union, Regional Development Fund BMWFW (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA), Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS programme of the Foundation for Polish Science, European Union, Regional Development Fund, Compagnia di San Paolo (Torino), Consorzio per la Fisica (Trieste), MIUR (Italy) [20108T4XTM], Thalis programme, Aristeia programme, EU-ESF, Greek NSRF, National Priorities Research Programme by Qatar National Research Fund, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand), Welch Foundation
BMWFW (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA), Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Scientific and Industrial Research, India, HOMING PLUS programme of the Foundation for Polish Science, European Union, Regional Development Fund, OPUS programme of the National Science Centre (Poland), Compagnia di San Paolo (Torino), MIUR project (Italy) [20108T4XTM], Thalis and Aristeia programmes - EU-ESF, Greek NSRF, National Priorities Research Program by Qatar National Research Fund, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand), Welch Foundation [C-1845] BMWFW (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA), Marie-Curie programme, European Research Council (European Union), EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS programme of the Foundation for Polish Science, European Union, Regional Development Fund, Mobility Plus programme of the Ministry of Science and Higher Education (Poland), OPUS programme of the National Science Center (Poland), Compagnia di San Paolo (Torino), MIUR project (Italy) [20108T4XTM], Thalis programme - EU-ESF, Aristeia programme - EU-ESF, Greek NSRF, National Priorities Research Program by Qatar National Research Fund, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand), Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand), Welch Foundation [C-1845]
BMWFW (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MOST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA), Marie-Curie program, European Research Council (European Union), EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS program of Foundation for Polish Science, Compagnia di San Paolo (Torino), Consorzio per la Fisica (Trieste), MIUR project (Italy) [20108T4XTM], Thalis program - EU-ESF, Aristeia program - EU-ESF, Greek NSRF, National Priorities Research Program by Qatar National Research Fund, NSTDA (Thailand), European Union, Regional Development Fund BMWFW (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MOST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), SENESCYT (Ecuador), MoER (Estonia), ERC (Estonia), IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/ IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), BUAP (Mexico), CINVESTAV (Mexico), CONACYT (Mexico), LNS (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), RAEP (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), PCTI (Spain), FEDER (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA), Marie-Curie program (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS program of the Foundation for Polish Science, European Union, Regional Development Fund, Mobility Plus program of the Ministry of Science and Higher Education, National Science Center (Poland) [Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406], National Priorities Research Program by Qatar National Research Fund, Programa Clarin-COFUND del Principado de Asturias, Thalis program - EU-ESF, Aristeia program - EU-ESF, Greek NSRF, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand), Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand), Welch Foundation [C-1845], European Research Council (European Union), Horizon Grant (European Union) [675440]
BMWFW (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MOST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), SENESCYT (Ecuador), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), BUAP [(Mexico)], CINVESTAV (Mexico), CONACYT (Mexico), LNS (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), ROSATOM (Russia), RAS (Russia), RFBR (Russia), RAEP (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), PCTI (Spain), FEDER (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA), Marie-Curie program, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS program of the Foundation for Polish Science, European Union, Regional Development Fund, Mobility Plus program of the Ministry of Science and Higher Education, National Science Center (Poland) [2014/14/M/ST2/00428, 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, 2015/19/B/ST2/02861, 2012/07/E/ST2/01406], National Priorities Research Program by Qatar National Research Fund, Programa Clarin-COFUND del Principado de Asturias, Thalis program, Aristeia program, EU-ESF, Greek NSRF, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand), Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand), Welch Foundation [C-1845] BMWFW (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), SENESCYT (Ecuador), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), BUAP (Mexico), CINVESTAV (Mexico), CONACYT (Mexico), LNS (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA), Marie-Curie programme, European Research Council and EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS programme of Foundation for Polish Science, European Union, Regional Development Fund, Mobility Plus programme of Ministry of Science and Higher Education, National Science Center (Poland) [Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406], EU-ESF, Greek NSRF, National Priorities Research Program by Qatar National Research Fund, Programa Clarin-COFUND del Principado de Asturias, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University, Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand), Welch Foundation [C-1845]
BMWFW (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MOST (China), NSFC (China), COLCIEN-CIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), SENESCYT (Ecuador), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), BUAP (Mexico), CINVESTAV (Mexico), CONACYT (Mexico), LNS (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), ROSATOM (Russia), RAS (Russia), RFBR (Russia), RAEP (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), PCTI (Spain), FEDER (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA) BMWFW (Austria), FWF (Austria), Fonds De La Recherche Scientifique - FNRS (Belgium), Fonds De La Recherche Scientifique - FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA), Marie-Curie programme (European Union), European Research Council (European Union), EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS programme of Foundation for Polish Science, European Union, Regional Development Fund, Compagnia di San Paolo (Torino), Consorzio per la Fisica (Trieste), MIUR project (Italy) [20108T4XTM], Thalis programme - EU-ESF, Aristeia programme - EU-ESF, Greek NSRF, National Priorities Research Program by Qatar National Research Fund
BMWFW (Austria), FWF (Austria), F.R.S. - FNRS (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MOST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA), Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, Alfred P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS programme of the Foundation for Polish Science, European Union, Regional Development Fund, OPUS programme of the National Science Center (Poland), Compagnia di San Paolo (Torino), MIUR (Italy) [20108T4XTM], Thalis programme - EU-ESF, Aristeia programme - EU-ESF, Greek NSRF, National Priorities Research Program by Qatar National Research Fund, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand), Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand), Welch Foundation [C-1845] BMWFW (Austria), FWF (Austria), F.R.S. - FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MOST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA), Marie-Curie program, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of the Czech Republic, Council of Science and Industrial Research, India, HOMING PLUS program of the Foundation for Polish Science, European Union, Regional Development Fund, Compagnia di San Paolo (Torino), Consorzio per la Fisica (Trieste), MIUR (Italy) [20108T4XTM], Thalis program, Aristeia program, EU-ESF, Greek NSRF, National Priorities Research Program by Qatar National Research Fund, Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand)

Author's Bibliography

Search for single production of vector-like quarks decaying into a b quark and a W boson in proton-proton collisions at root s=13 TeV

Sirunyan, A. M.; Adzic, R.; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Sirunyan, A. M.
AU  - Adzic, R.
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1743
AB  - A search is presented for a heavy vector-like quark, decaying into a b quark and a W boson, which is produced singly in association with a light flavor quark and a b quark. The analysis is performed using a data sample of proton-proton collisions at a center-of-mass energy of root s = 13 TeV collected at the LHC in 2015. The data set used in the analysis corresponds to an integrated luminosity of 2.3 fb(-1). The search is carried out using events containing one electron or muon, at least one b-tagged jet with large transverse momentum, at least one jet in the forward region of the detector, and missing transverse momentum. No excess over the standard model prediction is observed. Upper limits are placed on the production cross section of heavy exotic quarks: a T quark with a charge of 2/3, and a Y quark with a charge of -4/3. For Y quarks with coupling of 0.5 and beta(Y - GT bW) = 100%, the observed (expected) lower mass limits are 1.40 (1.0) TeV. This is the most stringent limit to date on the single production of the Y vector-like quark. (C) 2017 The Author(s). Published by Elsevier B.V.
T2  - Physics Letters B
T1  - Search for single production of vector-like quarks decaying into a b quark and a W boson in proton-proton collisions at root s=13 TeV
VL  - 772
SP  - 634
EP  - 656
DO  - 10.1016/j.physletb.2017.07.022
ER  - 
@article{
author = "Sirunyan, A. M. and Adzic, R. and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1743",
abstract = "A search is presented for a heavy vector-like quark, decaying into a b quark and a W boson, which is produced singly in association with a light flavor quark and a b quark. The analysis is performed using a data sample of proton-proton collisions at a center-of-mass energy of root s = 13 TeV collected at the LHC in 2015. The data set used in the analysis corresponds to an integrated luminosity of 2.3 fb(-1). The search is carried out using events containing one electron or muon, at least one b-tagged jet with large transverse momentum, at least one jet in the forward region of the detector, and missing transverse momentum. No excess over the standard model prediction is observed. Upper limits are placed on the production cross section of heavy exotic quarks: a T quark with a charge of 2/3, and a Y quark with a charge of -4/3. For Y quarks with coupling of 0.5 and beta(Y - GT bW) = 100%, the observed (expected) lower mass limits are 1.40 (1.0) TeV. This is the most stringent limit to date on the single production of the Y vector-like quark. (C) 2017 The Author(s). Published by Elsevier B.V.",
journal = "Physics Letters B",
title = "Search for single production of vector-like quarks decaying into a b quark and a W boson in proton-proton collisions at root s=13 TeV",
volume = "772",
pages = "634-656",
doi = "10.1016/j.physletb.2017.07.022"
}
11
9
25
22

Cross section measurement of t-channel single top quark production in pp collisions at root s=13 TeV

Sirunyan, A. M.; Adzic, R.; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Sirunyan, A. M.
AU  - Adzic, R.
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1744
AB  - The cross section for the production of single top quarks in the t channel is measured in proton- proton collisions at 13TeV with the CMS detector at the LHC. The analyzed data correspond to an integrated luminosity of 2.2fb(-1). The event selection requires one muon and two jets where one of the jets is identified as originating from a bottom quark. Several kinematic variables are then combined into a multivariate discriminator to distinguish signal from background events. A fit to the distribution of the discriminating variable yields a total cross section of 238 +/- 13 (stat)+/- 29(syst) pband a ratio of top quark and top antiquark production of Rt-ch.= 1.81 +/- 0.18 (stat)+/- 0.15(syst). From the total cross section the absolute value of the CKM matrix element Vtbis calculated to be 1.05 +/- 0.07 (exp)+/- 0.02(theo). All results are in agreement with the standard model predictions. (C) 2017 The Author(s). Published by Elsevier B.V.
T2  - Physics Letters B
T1  - Cross section measurement of t-channel single top quark production in pp collisions at root s=13 TeV
VL  - 772
SP  - 752
EP  - 776
DO  - 10.1016/j.physletb.2017.07.047
ER  - 
@article{
author = "Sirunyan, A. M. and Adzic, R. and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1744",
abstract = "The cross section for the production of single top quarks in the t channel is measured in proton- proton collisions at 13TeV with the CMS detector at the LHC. The analyzed data correspond to an integrated luminosity of 2.2fb(-1). The event selection requires one muon and two jets where one of the jets is identified as originating from a bottom quark. Several kinematic variables are then combined into a multivariate discriminator to distinguish signal from background events. A fit to the distribution of the discriminating variable yields a total cross section of 238 +/- 13 (stat)+/- 29(syst) pband a ratio of top quark and top antiquark production of Rt-ch.= 1.81 +/- 0.18 (stat)+/- 0.15(syst). From the total cross section the absolute value of the CKM matrix element Vtbis calculated to be 1.05 +/- 0.07 (exp)+/- 0.02(theo). All results are in agreement with the standard model predictions. (C) 2017 The Author(s). Published by Elsevier B.V.",
journal = "Physics Letters B",
title = "Cross section measurement of t-channel single top quark production in pp collisions at root s=13 TeV",
volume = "772",
pages = "752-776",
doi = "10.1016/j.physletb.2017.07.047"
}
1
35
42
51

Coherent J/psi photoproduction in ultra-peripheral PbPb collisions at root s(NN)=2.76 TeV with the CMS experiment

Khachatryan, V.; Adzic, R.; Ćirković, Predrag; Devetak, Damir; Milošević, Jovan; Rekovic, V.; Đorđević, Miloš; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adzic, R.
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1742
AB  - The cross section for coherent J/psi photoproduction accompanied by at least one neutron on one side of the interaction point and no neutron activity on the other side, Xn0n, is measured with the CMS experiment in ultra-peripheral PbPb collisions at root sNN= 2.76TeV. The analysis is based on a data sample corresponding to an integrated luminosity of 159 mu b(-1), collected during the 2011 PbPb run. The J/psi mesons are reconstructed in the dimuon decay channel, while neutrons are detected using zero degree calorimeters. The measured cross section is d sigma(Xn)o(n)(coh)/dy(J/psi) = 0.36 +/- 0.04 (stat)+/- 0.04 (syst) mbin the rapidity interval 1.8 LT vertical bar y vertical bar LT 2.3. Using a model for the relative rate of coherent photoproduction processes, this Xn0nmeasurement gives a total coherent photoproduction cross section of d sigma(coh/) dy(J/psi) = 1.82 +/- 0.22 (stat)+/- 0.20 (syst)+/- 0.19 (theo) mb. The data strongly disfavorthe impulse approximation model prediction, indicating that nuclear effects are needed to describe coherent J/psi photoproduction in.+ Pbinteractions. The data are found to be consistent with the leading twist approximation, which includes nuclear gluon shadowing. (C) 2017 The Author(s). Published by Elsevier B.V.
T2  - Physics Letters B
T1  - Coherent J/psi photoproduction in ultra-peripheral PbPb collisions at root s(NN)=2.76 TeV with the CMS experiment
VL  - 772
SP  - 489
EP  - 511
DO  - 10.1016/j.physletb.2017.07.001
ER  - 
@article{
author = "Khachatryan, V. and Adzic, R. and Ćirković, Predrag and Devetak, Damir and Milošević, Jovan and Rekovic, V. and Đorđević, Miloš and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1742",
abstract = "The cross section for coherent J/psi photoproduction accompanied by at least one neutron on one side of the interaction point and no neutron activity on the other side, Xn0n, is measured with the CMS experiment in ultra-peripheral PbPb collisions at root sNN= 2.76TeV. The analysis is based on a data sample corresponding to an integrated luminosity of 159 mu b(-1), collected during the 2011 PbPb run. The J/psi mesons are reconstructed in the dimuon decay channel, while neutrons are detected using zero degree calorimeters. The measured cross section is d sigma(Xn)o(n)(coh)/dy(J/psi) = 0.36 +/- 0.04 (stat)+/- 0.04 (syst) mbin the rapidity interval 1.8 LT vertical bar y vertical bar LT 2.3. Using a model for the relative rate of coherent photoproduction processes, this Xn0nmeasurement gives a total coherent photoproduction cross section of d sigma(coh/) dy(J/psi) = 1.82 +/- 0.22 (stat)+/- 0.20 (syst)+/- 0.19 (theo) mb. The data strongly disfavorthe impulse approximation model prediction, indicating that nuclear effects are needed to describe coherent J/psi photoproduction in.+ Pbinteractions. The data are found to be consistent with the leading twist approximation, which includes nuclear gluon shadowing. (C) 2017 The Author(s). Published by Elsevier B.V.",
journal = "Physics Letters B",
title = "Coherent J/psi photoproduction in ultra-peripheral PbPb collisions at root s(NN)=2.76 TeV with the CMS experiment",
volume = "772",
pages = "489-511",
doi = "10.1016/j.physletb.2017.07.001"
}
2
41
47
52

Search for single production of a heavy vector-like T quark decaying to a Higgs boson and a top quark with a lepton and jets in the final state

Khachatryan, V.; Adzic, R.; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adzic, R.
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1653
AB  - A search for single production of vector-like top quark partners (T) decaying into a Higgs boson and atop quark is performed using data from pp collisions at acentre-of-mass energy of 13 TeV collected by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 2.3 fb(-1). The top quark decay includes an electron or a muon while the Higgs boson decays into a pair of b quarks. No significant excess over standard model backgrounds is observed. Exclusion limits on the product of the production cross section and the branching fraction are derived in the T quark mass range 700 to 1800 GeV. For a mass of 1000 GeV, values of the product of the production cross section and the branching fraction greater than 0.8 and 0.7 pb are excluded at 95% confidence level, assuming left-and right-handed coupling of the T quark to standard model particles, respectively. This is the first analysis setting exclusion limits on the cross section of singly produced vector-like T quarks at a centre-of-mass energy of 13 TeV. (C) 2017 The Author(s). Published by Elsevier B.V.
T2  - Physics Letters B
T1  - Search for single production of a heavy vector-like T quark decaying to a Higgs boson and a top quark with a lepton and jets in the final state
VL  - 771
SP  - 80
EP  - 105
DO  - 10.1016/j.physletb.2017.05.019
ER  - 
@article{
author = "Khachatryan, V. and Adzic, R. and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1653",
abstract = "A search for single production of vector-like top quark partners (T) decaying into a Higgs boson and atop quark is performed using data from pp collisions at acentre-of-mass energy of 13 TeV collected by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 2.3 fb(-1). The top quark decay includes an electron or a muon while the Higgs boson decays into a pair of b quarks. No significant excess over standard model backgrounds is observed. Exclusion limits on the product of the production cross section and the branching fraction are derived in the T quark mass range 700 to 1800 GeV. For a mass of 1000 GeV, values of the product of the production cross section and the branching fraction greater than 0.8 and 0.7 pb are excluded at 95% confidence level, assuming left-and right-handed coupling of the T quark to standard model particles, respectively. This is the first analysis setting exclusion limits on the cross section of singly produced vector-like T quarks at a centre-of-mass energy of 13 TeV. (C) 2017 The Author(s). Published by Elsevier B.V.",
journal = "Physics Letters B",
title = "Search for single production of a heavy vector-like T quark decaying to a Higgs boson and a top quark with a lepton and jets in the final state",
volume = "771",
pages = "80-105",
doi = "10.1016/j.physletb.2017.05.019"
}
1
10
21
19

Constraints on anomalous Higgs boson couplings using production and decay information in the four-lepton final state

Sirunyan, A. M.; Adzic, R.; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Sirunyan, A. M.
AU  - Adzic, R.
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1858
AB  - A search is performed for anomalous interactions of the recently discovered Higgs boson using matrix element techniques with the information from its decay to four leptons and from associated Higgs boson production with two quark jets in either vector boson fusion or associated production with a vector boson. The data were recorded by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV and correspond to an integrated luminosity of 38.6 fb(-1). They are combined with the data collected at center-of-mass energies of 7 and 8 TeV, corresponding to integrated luminosities of 5.1 and 19.7 fb(-1), respectively. All observations are consistent with the expectations for the standard model Higgs boson. (C) 2017 The Author. Published by Elsevier B.V.
T2  - Physics Letters B
T1  - Constraints on anomalous Higgs boson couplings using production and decay information in the four-lepton final state
VL  - 775
SP  - 1
EP  - 24
DO  - 10.1016/j.physletb.2017.10.021
ER  - 
@article{
author = "Sirunyan, A. M. and Adzic, R. and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1858",
abstract = "A search is performed for anomalous interactions of the recently discovered Higgs boson using matrix element techniques with the information from its decay to four leptons and from associated Higgs boson production with two quark jets in either vector boson fusion or associated production with a vector boson. The data were recorded by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV and correspond to an integrated luminosity of 38.6 fb(-1). They are combined with the data collected at center-of-mass energies of 7 and 8 TeV, corresponding to integrated luminosities of 5.1 and 19.7 fb(-1), respectively. All observations are consistent with the expectations for the standard model Higgs boson. (C) 2017 The Author. Published by Elsevier B.V.",
journal = "Physics Letters B",
title = "Constraints on anomalous Higgs boson couplings using production and decay information in the four-lepton final state",
volume = "775",
pages = "1-24",
doi = "10.1016/j.physletb.2017.10.021"
}
6
21
28
26

Search for a heavy composite Majorana neutrino in the final state with two leptons and two quarks at root s=13 TeV

Sirunyan, A. M.; Adzic, R.; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Sirunyan, A. M.
AU  - Adzic, R.
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1859
AB  - A search for physics beyond the standard model in the final state with two same-flavour leptons (electrons or muons) and two quarks produced in proton-proton collisions at root s = 13 TeVis presented. The data were recorded by the CMS experiment at the CERN LHC and correspond to an integrated luminosity of 2.3 fb(-1). The observed data are in good agreement with the standard model background prediction. The results of the measurement are interpreted in the framework of a recently proposed model in which a heavy Majorana neutrino, N-l, stems from a composite-fermion scenario. Exclusion limits are set for the first time on the mass of the heavy composite Majorana neutrino, m(Nl), and the compositeness scale Lambda. For the case m(Nl) = Lambda, the existence of N-e (N-mu) is excluded for masses up to 4.60 (4.70) TeV at 95% confidence level. (C) 2017 The Author(s). Published by Elsevier B.V.
T2  - Physics Letters B
T1  - Search for a heavy composite Majorana neutrino in the final state with two leptons and two quarks at root s=13 TeV
VL  - 775
SP  - 315
EP  - 337
DO  - 10.1016/j.physletb.2017.11.001
ER  - 
@article{
author = "Sirunyan, A. M. and Adzic, R. and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1859",
abstract = "A search for physics beyond the standard model in the final state with two same-flavour leptons (electrons or muons) and two quarks produced in proton-proton collisions at root s = 13 TeVis presented. The data were recorded by the CMS experiment at the CERN LHC and correspond to an integrated luminosity of 2.3 fb(-1). The observed data are in good agreement with the standard model background prediction. The results of the measurement are interpreted in the framework of a recently proposed model in which a heavy Majorana neutrino, N-l, stems from a composite-fermion scenario. Exclusion limits are set for the first time on the mass of the heavy composite Majorana neutrino, m(Nl), and the compositeness scale Lambda. For the case m(Nl) = Lambda, the existence of N-e (N-mu) is excluded for masses up to 4.60 (4.70) TeV at 95% confidence level. (C) 2017 The Author(s). Published by Elsevier B.V.",
journal = "Physics Letters B",
title = "Search for a heavy composite Majorana neutrino in the final state with two leptons and two quarks at root s=13 TeV",
volume = "775",
pages = "315-337",
doi = "10.1016/j.physletb.2017.11.001"
}
3
7
9
10

Search for exotic decays of a Higgs boson into undetectable particles and one or more photons

Khachatryan, V.; Adzic, R.; Ekmedzic, M.; Milošević, Jovan; Rekovic, V.; Đorđević, Miloš; Milenović, Predrag

(2016)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adzic, R.
AU  - Ekmedzic, M.
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
PY  - 2016
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/907
AB  - A search is presented for exotic decays of a Higgs boson into undetectable particles and one or two isolated photons in pp collisions at a center-of-mass energy of 8 TeV. The data correspond to an integrated luminosity of up to 19.4 fb(-1) collected with the CMS detector at the LHC. Higgs bosons produced in gluon-gluon fusion and in association with a Z boson are investigated, using models in which the Higgs boson decays into a gravitino and a neutralino or a pair of neutralinos, followed by the decay of the neutralino to a gravitino and a photon. The selected events are consistent with the background-only hypothesis, and limits are placed on the product of cross sections and branching fractions. Assuming a standard model Higgs boson production cross section, a 95% confidence level upper limit is set on the branching fraction of a 125 GeV Higgs boson decaying into undetectable particles and one or two isolated photons as a function of the neutralino mass. For this class of models and neutralino masses from 1 to 120 GeV an upper limit in the range of 7 to 13% is obtained. Further results are given as a function of the neutralino lifetime, and also for a range of Higgs boson masses. (C) 2015 CERN for the benefit of the CMS Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
T2  - Physics Letters B
T1  - Search for exotic decays of a Higgs boson into undetectable particles and one or more photons
VL  - 753
SP  - 363
EP  - 388
DO  - 10.1016/j.physletb.2015.12.017
ER  - 
@article{
author = "Khachatryan, V. and Adzic, R. and Ekmedzic, M. and Milošević, Jovan and Rekovic, V. and Đorđević, Miloš and Milenović, Predrag",
year = "2016",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/907",
abstract = "A search is presented for exotic decays of a Higgs boson into undetectable particles and one or two isolated photons in pp collisions at a center-of-mass energy of 8 TeV. The data correspond to an integrated luminosity of up to 19.4 fb(-1) collected with the CMS detector at the LHC. Higgs bosons produced in gluon-gluon fusion and in association with a Z boson are investigated, using models in which the Higgs boson decays into a gravitino and a neutralino or a pair of neutralinos, followed by the decay of the neutralino to a gravitino and a photon. The selected events are consistent with the background-only hypothesis, and limits are placed on the product of cross sections and branching fractions. Assuming a standard model Higgs boson production cross section, a 95% confidence level upper limit is set on the branching fraction of a 125 GeV Higgs boson decaying into undetectable particles and one or two isolated photons as a function of the neutralino mass. For this class of models and neutralino masses from 1 to 120 GeV an upper limit in the range of 7 to 13% is obtained. Further results are given as a function of the neutralino lifetime, and also for a range of Higgs boson masses. (C) 2015 CERN for the benefit of the CMS Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).",
journal = "Physics Letters B",
title = "Search for exotic decays of a Higgs boson into undetectable particles and one or more photons",
volume = "753",
pages = "363-388",
doi = "10.1016/j.physletb.2015.12.017"
}
12
8
9
9

Measurement of spin correlations in tf production using the matrix element method in the muon plus jets final state in pp collisions at root S=8 TeV

Khachatryan, V.; Adzic, R.; Ekmedzic, M.; Milošević, Jovan; Rekovic, V.; Đorđević, Miloš; Milenović, Predrag

(2016)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adzic, R.
AU  - Ekmedzic, M.
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
PY  - 2016
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1106
AB  - The consistency of the spin correlation strength in top quark pair production with the standard model (SM) prediction is tested in the muon+jets final state. The events are selected from pp collisions, collected by the CMS detector, at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb(-1). The data are compared with the expectation for the spin correlation predicted by the SM and with the expectation of no correlation. Using a template fit method, the fraction of events that show SM spin correlations is measured to be 0.72 0.08 (stat)(-013)(+015) (syst), representing the most precise measurement of this quantity in the muon+jets final state to date. (C) 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.orglicenses/by/4.01).
T2  - Physics Letters B
T1  - Measurement of spin correlations in tf production using the matrix element method in the muon plus jets final state in pp collisions at root S=8 TeV
VL  - 758
SP  - 321
EP  - 346
DO  - 10.1016/j.physletb.2016.05.005
ER  - 
@article{
author = "Khachatryan, V. and Adzic, R. and Ekmedzic, M. and Milošević, Jovan and Rekovic, V. and Đorđević, Miloš and Milenović, Predrag",
year = "2016",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1106",
abstract = "The consistency of the spin correlation strength in top quark pair production with the standard model (SM) prediction is tested in the muon+jets final state. The events are selected from pp collisions, collected by the CMS detector, at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb(-1). The data are compared with the expectation for the spin correlation predicted by the SM and with the expectation of no correlation. Using a template fit method, the fraction of events that show SM spin correlations is measured to be 0.72 0.08 (stat)(-013)(+015) (syst), representing the most precise measurement of this quantity in the muon+jets final state to date. (C) 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.orglicenses/by/4.01).",
journal = "Physics Letters B",
title = "Measurement of spin correlations in tf production using the matrix element method in the muon plus jets final state in pp collisions at root S=8 TeV",
volume = "758",
pages = "321-346",
doi = "10.1016/j.physletb.2016.05.005"
}
1
9
8
15

Upsilon (nS) polarizations versus particle multiplicity in pp collisions at root s=7 TeV

Khachatryan, V.; Adzic, R.; Ćirković, Predrag; Devetak, Damir; Milošević, Jovan; Rekovic, V.; Đorđević, Miloš; Milenović, Predrag

(2016)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adzic, R.
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
PY  - 2016
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1254
AB  - The polarizations of the Upsilon(1S), Upsilon(2S), and Upsilon(3S) mesons are measured as a function of the charged particle multiplicity in proton-proton collisions at root s = 7 TeV. The measurements are performed with a dimuon data sample collected in 2011 by the CMS experiment, corresponding to an integrated luminosity of 4.9fb(-1). The results are extracted from the dimuon decay angular distributions, in two ranges of Upsilon(nS) transverse momentum (10-15 and 15-35 GeV), and in the rapidity interval |y| LT 1.2. The results do not show significant changes from low-to high-multiplicity pp collisions, although large uncertainties preclude definite statements in the Upsilon(2S) and Upsilon(3S) cases. (C) 2016 The Author(s). Published by Elsevier B.V.
T2  - Physics Letters B
T1  - Upsilon (nS) polarizations versus particle multiplicity in pp collisions at root s=7 TeV
VL  - 761
SP  - 31
EP  - 52
DO  - 10.1016/j.physletb.2016.07.065
ER  - 
@article{
author = "Khachatryan, V. and Adzic, R. and Ćirković, Predrag and Devetak, Damir and Milošević, Jovan and Rekovic, V. and Đorđević, Miloš and Milenović, Predrag",
year = "2016",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1254",
abstract = "The polarizations of the Upsilon(1S), Upsilon(2S), and Upsilon(3S) mesons are measured as a function of the charged particle multiplicity in proton-proton collisions at root s = 7 TeV. The measurements are performed with a dimuon data sample collected in 2011 by the CMS experiment, corresponding to an integrated luminosity of 4.9fb(-1). The results are extracted from the dimuon decay angular distributions, in two ranges of Upsilon(nS) transverse momentum (10-15 and 15-35 GeV), and in the rapidity interval |y| LT 1.2. The results do not show significant changes from low-to high-multiplicity pp collisions, although large uncertainties preclude definite statements in the Upsilon(2S) and Upsilon(3S) cases. (C) 2016 The Author(s). Published by Elsevier B.V.",
journal = "Physics Letters B",
title = "Upsilon (nS) polarizations versus particle multiplicity in pp collisions at root s=7 TeV",
volume = "761",
pages = "31-52",
doi = "10.1016/j.physletb.2016.07.065"
}
2
3
4
6

Measurement of the ratio B(B-s(0) - GT J/psi f(0)(980))/B(B-s(0) - GT J/psi phi(1020)) in pp collisions at root s=7 TeV

Khachatryan, V.; Adzic, R.; Ekmedzic, M.; Milošević, Jovan; Rekovic, V.; Đorđević, Miloš; Milenović, Predrag

(2016)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adzic, R.
AU  - Ekmedzic, M.
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
PY  - 2016
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/998
AB  - A measurement of the ratio of the branching fractions of the B-s(0) meson to J/psi f(0)(980) and to J/psi phi(1020) is presented. The J/psi, f(0)(980), and phi(1020) are observed through their decays to mu(+)mu(-), pi(+)pi(-), and K+K-, respectively. The f(0) and the phi are identified by requiring |M-pi+(pi)- - 974 MeV| LT 50 MeV and |M-K+(K)- - 1020 MeV| LT 10 MeV. The analysis is based on a data sample of pp collisions at a centre-of-mass energy of 7 TeV, collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 5.3fb(-1). The measured ratio is B(B-s(0) - GT J/psi f(0)) B(f(0) - GT pi(+)pi(-))/B(B-s(0) - GT J/psi phi) B(phi - GT K+K-)= 0.140 +/- 0.008 (stat) +/- 0.023 (syst), where the first uncertainty is statistical and the second is systematic. (C) 2016 CERN for the benefit of the CMS Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license.
T2  - Physics Letters B
T1  - Measurement of the ratio B(B-s(0) - GT J/psi f(0)(980))/B(B-s(0) - GT J/psi phi(1020)) in pp collisions at root s=7 TeV
VL  - 756
SP  - 84
EP  - 102
DO  - 10.1016/j.physletb.2016.02.047
ER  - 
@article{
author = "Khachatryan, V. and Adzic, R. and Ekmedzic, M. and Milošević, Jovan and Rekovic, V. and Đorđević, Miloš and Milenović, Predrag",
year = "2016",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/998",
abstract = "A measurement of the ratio of the branching fractions of the B-s(0) meson to J/psi f(0)(980) and to J/psi phi(1020) is presented. The J/psi, f(0)(980), and phi(1020) are observed through their decays to mu(+)mu(-), pi(+)pi(-), and K+K-, respectively. The f(0) and the phi are identified by requiring |M-pi+(pi)- - 974 MeV| LT 50 MeV and |M-K+(K)- - 1020 MeV| LT 10 MeV. The analysis is based on a data sample of pp collisions at a centre-of-mass energy of 7 TeV, collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 5.3fb(-1). The measured ratio is B(B-s(0) - GT J/psi f(0)) B(f(0) - GT pi(+)pi(-))/B(B-s(0) - GT J/psi phi) B(phi - GT K+K-)= 0.140 +/- 0.008 (stat) +/- 0.023 (syst), where the first uncertainty is statistical and the second is systematic. (C) 2016 CERN for the benefit of the CMS Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license.",
journal = "Physics Letters B",
title = "Measurement of the ratio B(B-s(0) - GT J/psi f(0)(980))/B(B-s(0) - GT J/psi phi(1020)) in pp collisions at root s=7 TeV",
volume = "756",
pages = "84-102",
doi = "10.1016/j.physletb.2016.02.047"
}
1
3
3
3

Search for a Higgs boson decaying into gamma*gamma - GT ll gamma with low dilepton mass in pp collisions at root s=8 TeV

Khachatryan, V.; Adzic, R.; Ekmedzic, M.; Milošević, Jovan; Rekovic, V.; Đorđević, Miloš; Milenović, Predrag

(2016)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adzic, R.
AU  - Ekmedzic, M.
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
PY  - 2016
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/906
AB  - A search is described for a Higgs boson decaying into two photons, one of which has an internal conversion to a muon or an electron pair (ll gamma). The analysis is performed using proton-proton collision data recorded with the CMS detector at the LHC at a centre-of-mass energy of 8TeV, corresponding to an integrated luminosity of 19.7 fb(-1). The events selected have an opposite-sign muon or electron pair and a high transverse momentum photon. No excess above background has been found in the three-body invariant mass range 120 LT m(ll gamma) LT 150 GeV, and limits have been derived for the Higgs boson production cross section times branching fraction for the decay H - GT gamma*gamma - GT ll gamma, where the dilepton invariant mass is less than 20 GeV. For a Higgs boson with m(H) = 125 GeV, a 95% confidence level (CL) exclusion observed (expected) limit is 6.7 (5.9(-1.8)(+2.8)) times the standard model prediction. Additionally, an upper limit at 95% CL on the branching fraction of H - GT (J/psi)gamma for the 125 GeV Higgs boson is set at 1.5 x10(-3). (C) 2015 CERN for the benefit of the CMS Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
T2  - Physics Letters B
T1  - Search for a Higgs boson decaying into gamma*gamma - GT ll gamma with low dilepton mass in pp collisions at root s=8 TeV
VL  - 753
SP  - 341
EP  - 362
DO  - 10.1016/j.physletb.2015.12.039
ER  - 
@article{
author = "Khachatryan, V. and Adzic, R. and Ekmedzic, M. and Milošević, Jovan and Rekovic, V. and Đorđević, Miloš and Milenović, Predrag",
year = "2016",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/906",
abstract = "A search is described for a Higgs boson decaying into two photons, one of which has an internal conversion to a muon or an electron pair (ll gamma). The analysis is performed using proton-proton collision data recorded with the CMS detector at the LHC at a centre-of-mass energy of 8TeV, corresponding to an integrated luminosity of 19.7 fb(-1). The events selected have an opposite-sign muon or electron pair and a high transverse momentum photon. No excess above background has been found in the three-body invariant mass range 120 LT m(ll gamma) LT 150 GeV, and limits have been derived for the Higgs boson production cross section times branching fraction for the decay H - GT gamma*gamma - GT ll gamma, where the dilepton invariant mass is less than 20 GeV. For a Higgs boson with m(H) = 125 GeV, a 95% confidence level (CL) exclusion observed (expected) limit is 6.7 (5.9(-1.8)(+2.8)) times the standard model prediction. Additionally, an upper limit at 95% CL on the branching fraction of H - GT (J/psi)gamma for the 125 GeV Higgs boson is set at 1.5 x10(-3). (C) 2015 CERN for the benefit of the CMS Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).",
journal = "Physics Letters B",
title = "Search for a Higgs boson decaying into gamma*gamma - GT ll gamma with low dilepton mass in pp collisions at root s=8 TeV",
volume = "753",
pages = "341-362",
doi = "10.1016/j.physletb.2015.12.039"
}
11
9
15
12

Search for heavy Majorana neutrinos in mu(+/-)mu(+/-) + jets events inproton-proton collisions at root s=8TeV

Khachatryan, V.; Adzic, R.; Ekmedzic, M.; Milošević, Jovan; Rekovic, V.; Đorđević, Miloš; Milenović, Predrag

(2015)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adzic, R.
AU  - Ekmedzic, M.
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
PY  - 2015
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/686
AB  - A search is performed for heavy Majorana neutrinos (N) using an event signature defined by two muons of the same charge and two jets (mu(+/-)mu(+/-)jj). The data correspond to an integrated luminosity of 19.7 fb(-1) of proton-proton collisions at a center-of-mass energy of 8TeV, collected with the CMS detector at the CERN LHC. No excess of events is observed beyond the expected standard model background and upper limits are set on vertical bar V-mu N vertical bar(2) as a function of Majorana neutrino mass mN for masses in the range of 40-500GeV, where V-mu N is the mixing element of the heavy neutrino with the standard model muon neutrino. The limits obtained are vertical bar V-mu N vertical bar(2) LT 0.00470 for m(N) = 90GeV, vertical bar V-mu N vertical bar(2) LT 0.0123 for m(N) = 200GeV, and vertical bar V-mu N vertical bar(2) LT 0.583 for m(N) = 500 GeV. These results extend considerably the regions excluded by previous direct searches. (C) 2015 CERN for the benefit of the CMS Collaboration. Published by Elsevier B.V.
T2  - Physics Letters B
T1  - Search for heavy Majorana neutrinos in mu(+/-)mu(+/-) + jets events inproton-proton collisions at root s=8TeV
VL  - 748
SP  - 144
EP  - 166
DO  - 10.1016/j.physletb.2015.06.070
ER  - 
@article{
author = "Khachatryan, V. and Adzic, R. and Ekmedzic, M. and Milošević, Jovan and Rekovic, V. and Đorđević, Miloš and Milenović, Predrag",
year = "2015",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/686",
abstract = "A search is performed for heavy Majorana neutrinos (N) using an event signature defined by two muons of the same charge and two jets (mu(+/-)mu(+/-)jj). The data correspond to an integrated luminosity of 19.7 fb(-1) of proton-proton collisions at a center-of-mass energy of 8TeV, collected with the CMS detector at the CERN LHC. No excess of events is observed beyond the expected standard model background and upper limits are set on vertical bar V-mu N vertical bar(2) as a function of Majorana neutrino mass mN for masses in the range of 40-500GeV, where V-mu N is the mixing element of the heavy neutrino with the standard model muon neutrino. The limits obtained are vertical bar V-mu N vertical bar(2) LT 0.00470 for m(N) = 90GeV, vertical bar V-mu N vertical bar(2) LT 0.0123 for m(N) = 200GeV, and vertical bar V-mu N vertical bar(2) LT 0.583 for m(N) = 500 GeV. These results extend considerably the regions excluded by previous direct searches. (C) 2015 CERN for the benefit of the CMS Collaboration. Published by Elsevier B.V.",
journal = "Physics Letters B",
title = "Search for heavy Majorana neutrinos in mu(+/-)mu(+/-) + jets events inproton-proton collisions at root s=8TeV",
volume = "748",
pages = "144-166",
doi = "10.1016/j.physletb.2015.06.070"
}
13
57
73
73