Pantovic, Aleksandar

Link to this page

Authority KeyName Variants
4088a8dc-02cd-4a1d-8167-3fe35efcf28b
  • Pantovic, Aleksandar (1)
Projects

Author's Bibliography

Oxidative stress-mediated hemolytic activity of solvent exchange-prepared fullerene (C-60) nanoparticles

Trpković, Andreja; Todorović-Marković, Biljana; Kleut, Duška; Misirkić, Maja; Janjetović, Kristina D.; Vucicevic, Ljubica; Pantovic, Aleksandar; Jovanović, Svetlana P.; Dramićanin, Miroslav; Marković, Zoran M.; Trajković, Vladimir S.

(2010)

TY  - JOUR
AU  - Trpković, Andreja
AU  - Todorović-Marković, Biljana
AU  - Kleut, Duška
AU  - Misirkić, Maja
AU  - Janjetović, Kristina D.
AU  - Vucicevic, Ljubica
AU  - Pantovic, Aleksandar
AU  - Jovanović, Svetlana P.
AU  - Dramićanin, Miroslav
AU  - Marković, Zoran M.
AU  - Trajković, Vladimir S.
PY  - 2010
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/4093
AB  - The present study investigated the hemolytic properties of fullerene (C-60) nanoparticles prepared by solvent exchange using tetrahydrofuran (nC(60)THF), or by mechanochemically assisted complexation with macrocyclic oligosaccharide gamma-cyclodextrin (nC(60)CDX) or the copolymer ethylene vinyl acetate-ethylene vinyl versatate (nC(60)EVA-EVV). The spectrophotometrical analysis of hemoglobin release revealed that only nC(60)THF, but not nC(60)CDX or nC(60)EVA-EVV, was able to cause lysis of human erythrocytes in a dose-and time-dependent manner. Atomic force microscopy revealed that nC(60)THF-mediated hemolysis was preceded by erythrocyte shrinkage and increase in cell surface roughness. A flow cytometric analysis confirmed a decrease in erythrocyte size and demonstrated a significant increase in reactive oxygen species production in red blood cells exposed to nC(60)THF. The nC(60)THF-triggered hemolytic activity was efficiently reduced by the antioxidants N-acetylcysteine and butylated hydroxyanisole, as well as by serum albumin, the most abundant protein in human blood plasma. These data indicate that nC(60)THF can cause serum albumin-preventable hemolysis through oxidative stress-mediated damage of the erythrocyte membrane.
T2  - Nanotechnology
T1  - Oxidative stress-mediated hemolytic activity of solvent exchange-prepared fullerene (C-60) nanoparticles
VL  - 21
IS  - 37
DO  - 10.1088/0957-4484/21/37/375102
ER  - 
@article{
author = "Trpković, Andreja and Todorović-Marković, Biljana and Kleut, Duška and Misirkić, Maja and Janjetović, Kristina D. and Vucicevic, Ljubica and Pantovic, Aleksandar and Jovanović, Svetlana P. and Dramićanin, Miroslav and Marković, Zoran M. and Trajković, Vladimir S.",
year = "2010",
abstract = "The present study investigated the hemolytic properties of fullerene (C-60) nanoparticles prepared by solvent exchange using tetrahydrofuran (nC(60)THF), or by mechanochemically assisted complexation with macrocyclic oligosaccharide gamma-cyclodextrin (nC(60)CDX) or the copolymer ethylene vinyl acetate-ethylene vinyl versatate (nC(60)EVA-EVV). The spectrophotometrical analysis of hemoglobin release revealed that only nC(60)THF, but not nC(60)CDX or nC(60)EVA-EVV, was able to cause lysis of human erythrocytes in a dose-and time-dependent manner. Atomic force microscopy revealed that nC(60)THF-mediated hemolysis was preceded by erythrocyte shrinkage and increase in cell surface roughness. A flow cytometric analysis confirmed a decrease in erythrocyte size and demonstrated a significant increase in reactive oxygen species production in red blood cells exposed to nC(60)THF. The nC(60)THF-triggered hemolytic activity was efficiently reduced by the antioxidants N-acetylcysteine and butylated hydroxyanisole, as well as by serum albumin, the most abundant protein in human blood plasma. These data indicate that nC(60)THF can cause serum albumin-preventable hemolysis through oxidative stress-mediated damage of the erythrocyte membrane.",
journal = "Nanotechnology",
title = "Oxidative stress-mediated hemolytic activity of solvent exchange-prepared fullerene (C-60) nanoparticles",
volume = "21",
number = "37",
doi = "10.1088/0957-4484/21/37/375102"
}
Trpković, A., Todorović-Marković, B., Kleut, D., Misirkić, M., Janjetović, K. D., Vucicevic, L., Pantovic, A., Jovanović, S. P., Dramićanin, M., Marković, Z. M.,& Trajković, V. S.. (2010). Oxidative stress-mediated hemolytic activity of solvent exchange-prepared fullerene (C-60) nanoparticles. in Nanotechnology, 21(37).
https://doi.org/10.1088/0957-4484/21/37/375102
Trpković A, Todorović-Marković B, Kleut D, Misirkić M, Janjetović KD, Vucicevic L, Pantovic A, Jovanović SP, Dramićanin M, Marković ZM, Trajković VS. Oxidative stress-mediated hemolytic activity of solvent exchange-prepared fullerene (C-60) nanoparticles. in Nanotechnology. 2010;21(37).
doi:10.1088/0957-4484/21/37/375102 .
Trpković, Andreja, Todorović-Marković, Biljana, Kleut, Duška, Misirkić, Maja, Janjetović, Kristina D., Vucicevic, Ljubica, Pantovic, Aleksandar, Jovanović, Svetlana P., Dramićanin, Miroslav, Marković, Zoran M., Trajković, Vladimir S., "Oxidative stress-mediated hemolytic activity of solvent exchange-prepared fullerene (C-60) nanoparticles" in Nanotechnology, 21, no. 37 (2010),
https://doi.org/10.1088/0957-4484/21/37/375102 . .
31
27
33