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a b s t r a c t

A new explicit closed-form formula for the multivariate (n, k)th partial Bell polynomial
Bn,k(x1, x2, . . . , xn−k+1) is deduced. The formula involves multiple summations and makes
it possible, for the first time, to easily evaluate Bn,k directly for given values of n and k
(n ≥ k, k = 2, 3, . . .). Also, a new addition formula (with respect to k) is found for the
polynomials Bn,k and it is shown that they admit a new recurrence relation. Several special
cases and consequences are pointed out, and some examples are also given.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

For n and k non-negative integers, the (exponential) (n, k)th partial Bell polynomial in the variables x1, x2, . . . , xn−k+1
denoted by Bn,k ≡ Bn,k(x1, x2, . . . , xn−k+1) may be defined by the formal power series expansion (see, for instance,
[1, pp. 133, Eq. (3a’)])

1
k!


∞−

m=1

xm
tm

m!

k

=

∞−
n=k

Bn,k(x1, x2, . . . , xn−k+1)
tn

n!
(k ≥ 0), (1.1)

or, what amounts to the same, by the explicit formula [2, p. 96]
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where (multiple) summation is extended over all partitions of a positive integer number n into exactly k parts (summands),
i.e., over all solutions in non-negative integers ℓα , 1 ≤ α ≤ n − k + 1, of a system of the two simultaneous equations

ℓ1 + 2 ℓ2 + · · · + (n − k + 1) ℓn−k+1 = n

and

ℓ1 + ℓ2 + · · · + ℓn−k+1 = k.

For fixed n and k, Bn,k has positive integral coefficients and is a homogenous and isobaric polynomial in its (n − k + 1)
variables x1, x2, . . . , xn−k+1 of total degree k and total weight n, i.e., it is a linear combination of monomials xℓ11 xℓ22 . . . x

ℓn−k+1
n−k+1

whose partial degrees andweights are constantly given by ℓ1+ℓ2+· · ·+ℓn−k+1 = k and ℓ1+2ℓ2+· · ·+(n−k+1)ℓn−k+1 = n.
For some examples of these polynomials see Section 3.
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The partial Bell polynomials are quite general polynomials, they have a number of applications and more details about
them can be found in [3], [1, pp. 133–137], [2, pp. 95–98], [4, pp. 412–417] and [5, pp. 151–182]. However, the following
formulae for Bn,k
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appear not to have beennoticed in anywork on the subjectwhichwehave seen. In this note it is aimed toprovide short proofs
of these results, show some immediate consequences of them and provide some application examples (see also Section 3).

2. Proof of the main results

We begin by showing that the identity (1.3) follows without difficulty from the definition of partial Bell polynomials Bn,k
by means of the generating relation (1.1), given that the next auxiliary result for powers of series is used. Consider
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For a fixed positive integer k, we have that:

gk(k) = f k1 , (2.2a)
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Indeed, by comparing (2.1) with the definition of Bn,k in (1.1) and upon setting gn(k) = k!Bn,k/n! and fn = xn/n!, we arrive
at the proposed formula (1.3) by utilizing (2.2b).

Note that (2.2b) may be found in the literature (see [6]) but it is not as widely known (and even less used) as it should be.
It is exactly for this reason that we derive it starting from the following more general (and equally little known) recurrence
relation involving the series coefficients fn and gn(k) in (

∑
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n)k =

∑
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n.
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[α(k + 1)− n]fα gn−α(k) = 0 (n ≥ 0). (2.3)

First, upon taking logarithms of each side of the equation g(x) = [f (x)]k and then differentiating both sides of the result
with respect to x, we obtain f (x)g ′(x) = k f ′(x)g(x). Next, insert the power series expansions of the various functions in this
equation and multiply both sides by x, to get

∞−
m=0

fmxm ·

∞−
m=0

mgm(k) xm = k
∞−

m=0

m fmxm ·

∞−
m=0

gm(k) xm. (2.4)

Now, recall that if
∑

∞

m=0 am and
∑

∞

m=0 bm are two series, then their Cauchy product is the series
∑

∞

n=0 cn where cn =∑n
k=0 akbn−k. This is to say that in the particular case at hand, by equating the coefficients of a given power of x, say xn, on

both sides of (2.4), we have
∑n

α=0(n − α)fαgn−α(k) = k
∑n

α=0 αfαgn−α(k), which eventually gives (2.3). The recurrence
relation (2.3) is clearly valid for an arbitrary real or complex number k and it can be used to compute successively as many
of the unknown gm(k) values as desired, in order g0(k), g1(k), g2(k), . . . , if g0(k) is known. The special case of (2.3) solved
for gn(k), for k a positive integer and f0 ≠ 0, appears in various editions of the standard reference book by Gradshteyn and
Ryzhik (see, for instance, [7, p. 17, Entry 0.314]).

Finally, if we suppose f0 = 0 and f1 ≠ 0 then, from (
∑
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n)k =

∑
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n, where k is a positive integer, it is

obvious that the coefficient gn(k), n = 0, 1, . . . , k, is only nonzero when n = k, gk(k) then equals f k1 (see (2.2a)), while
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recurrence relation (2.3) becomes
n−k−
α=1

[α(k + 1)− n]fα gn−α(k) = 0 (n ≥ k),

so that, upon replacing n by n + 1, putting α + 1 for α and solving for gn(k), we have that the coefficients gn(k), n ≥ k + 1,
are given by (2.2b) above.

In order to prove (1.4)we shall again resort to the generating relation forBn,k (1.1). Let us by [tn]φ(t)denote the coefficient
of tn in the power series of an arbitrary φ(t). Put f (t) =
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, then by (1.1), we have

k1!Bn,k1 = n! [tn]f (t)k1 (n ≥ k1)
and

k2!Bn,k2 = n! [tn]f (t)k2 (n ≥ k2),
thus

(k1 + k2)!Bn,k1+k2 = n! [tn]f (t)k1+k2 = n! [tn](f (t)k1 · f (t)k2)

= n!
n−
α=0

[tα]f (t)k1 · [tn−α]f (t)k2 = n!
n−
α=0

k1!Bα,k1
α!

k2!Bn−α,k2

(n − α)!
, (n ≥ k1 + k2) (2.5)

since [tn](φ(t)ψ(t)) =
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α=0[t
α
]φ(t) · [tn−α]ψ(t) (the Cauchy product of two series). We conclude the proof by noting that

the required expression (1.4) follows by rewriting (2.5).
Lastly, we shall prove the closed-form formula (1.5) by making use of (1.4). It suffices to show that the addition formula

for Bn,k (1.4) may be used to deduce the following:
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By bearing in mind that Bn,1 = xn (this is a simple consequence of the definition Bn,k in (1.1)) and upon noticing that
x0 = 0 (again, see (1.1)), the expression for Bn,2 given in (2.6) follows by (1.4) with k1 = 1 and k2 = 1. Further, this result
for Bn,2 together with (1.4), where k1 = 2 and k2 = 1, leads to (2.7). It is clear that by repeating this procedure recursively
we may obtain Bn,4, and so on.

3. Further results and concluding remarks

We remark that the explicit closed-form formula for Bn,k(x1, x2, . . . , xn−k+1) given by (1.5) is particularly useful. Namely,
it is hard to work with the formula (1.2) which explicitly defines Bn,k due to complicated multiple summations, and, for
instance, it is virtually impossible by its use to write down a polynomial for given values of n and k. However, formula (1.5),
although also involving multiple summations, makes this possible. In other words, it is now possible to directly evaluate
Bn,k for given n and k (n ≥ k, k = 2, 3, . . .) by utilizing (1.5) instead of computing it recursively by making use of some
recurrence relations (see, for instance, (1.3)). It is noteworthy to mention that the practical evaluation is greatly facilitated
bywide availability of various symbolic algebra programs. In order to demonstrate an application of this result,we list several
of the polynomials Bn,k determined by the formula (1.5), where all the computations were carried out by usingMathematica
6.0 (Wolfram Research)

B8,7 = 28x61x2, B9,7 = 378x51x
2
2 + 84x61x3,

B10,7 = 3150x41x
3
2 + 2520x51x2x3 + 210x61x4,
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4
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2
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2
3 + 6930x51x2x4 + 462x61x5,
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3
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3
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2
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2
2x5 + 72,072x51x3x5 + 36,036x51x2x6 + 1716x61x7.
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It should be noted that our results for B8,7 B9,7 and B10,7 are in full agreement with those recorded in the work (for instance)
of Charalambides [4, p. 417].

One further illustration of an application of (1.5) is the following (presumably) new explicit formula
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for the Stirling numbers of the second kind S(n, k) defined by means of (see [1, Chapter 5])
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which is an immediate consequence of the relationship S(n, k) = Bn,k(1, . . . , 1) [1, p. 135, Eq. (3g)]. Moreover, for given k,
it is easy to sum the multiple sum (3.1) by repeated use of the familiar result (1 + x)n =
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and these expressions agree fully with those which are obtained by using the defining relation (3.2).
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